Non-Terminating Basic Hypergeometric Series and the q-Zeilberger Algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonterminating Basic Hypergeometric Series and the q-Zeilberger Algorithm

We present a systematic method for proving nonterminating basic hypergeometric identities. Assume that k is the summation index. By setting a parameter x to xqn, we may find a recurrence relation of the summation by using the q-Zeilberger algorithm. This method applies to almost all nonterminating basic hypergeometric summation formulas in the book of Gasper and Rahman. Furthermore, by comparin...

متن کامل

Multiplicate inverse forms of terminating hypergeometric series

The multiplicate form of Gould–Hsu’s inverse series relations enables to investigate the dual relations of the Chu–Vandermonde–Gauß’s, the Pfaff–Saalschütz’s summation theorems and the binomial convolution formula due to Hagen and Rothe. Several identitity and reciprocal relations are thus established for terminating hypergeometric series. By virtue of the duplicate inversions, we establish sev...

متن کامل

A q-ANALOGUE OF NON-STRICT MULTIPLE ZETA VALUES AND BASIC HYPERGEOMETRIC SERIES

We consider the generating function for a q-analogue of non-strict multiple zeta values (or multiple zeta-star values) and prove an explicit formula for it in terms of a basic hypergeometric series 3φ2. By specializing the variables in the generating function, we reproduce the sum formula obtained by Ohno and Okuda and get some relations in the case of full height.

متن کامل

Basic Hypergeometric Series

Abstract. We compute the inverse of a specific infinite r-dimensional matrix, thus unifying multidimensional matrix inversions recently found by Milne, Lilly, and Bhatnagar. Our inversion is an r-dimensional extension of a matrix inversion previously found by Krattenthaler. We also compute the inverse of another infinite r-dimensional matrix. As applications of our matrix inversions, we derive ...

متن کامل

The Cauchy Operator for Basic Hypergeometric Series

We introduce the Cauchy augmentation operator for basic hypergeometric series. Heine’s 2φ1 transformation formula and Sears’ 3φ2 transformation formula can be easily obtained by the symmetric property of some parameters in operator identities. The Cauchy operator involves two parameters, and it can be considered as a generalization of the operator T (bDq). Using this operator, we obtain extensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 2008

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091506001313